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ABSTRACT

This work is the result of research into valid and com-
pact statistical FET models. This paper presents a sta-
tistical interpolation technique which extends the Truth
Model proposed by Purviance and Meehan in [6]. The
Truth Model proposes to simply use samples from a FET
measurement data base when performing statistical analy-
sis and design of circuits.

The statistical interpolation technique presented here
multiplies the number of points within a statistical data
base by interpolating among the measurements in a statis-
tically valid manner. It lends itself easily to software imple-
mentation, and gives results better than other simulation
models now available.

We have developed and validated the statistical interpo-
lation technique using 179 Galium Arsenide FETs supplied
by TriQuint Semiconductor Inc. [5]. We show that the
marginal statistics and the correlation matrix are preserved
for the simulated samples.

1 Introduction

The past focus in statistical circuit design has been design
for high parametric yield [1,2,7]. Yield is the fraction of
circuits which meet specifications when the circuit parame-
ters statistically vary around their nominal values. If good
statistical models are used, software tools exist which can
determine circuit designs for which parametric yield is in
some sense optimized. To date, however, little work has
been done to validate statistical component models, or the
assumptions commonly made about the component statis-
ties [6,5].

A FET is commonly characterized by a data base con-
taining a number of measurements, n, of actual manufac-
tured FETs. For instance, 179 FET measurements were
used in this study. This data base then characterizes the
statistical nature of the manufactured FET. The Truth
Model [6] proposes to simply use the actual FET measure-
ments when performing statistical analysis and design of
circuits. This is practical and accurate when the number
of measurements is “large”.
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Si = (R(S11(£1)), I(S11(f1)), R(S512(f1)), S(512(f1)),
R(S21(f1)), S(S21(1)), R(S22( 1)), S(522( 1))
§l‘i(ffll(fxs)),3(511(1‘5)),.ﬂ‘ﬁ(Sl?u(fs.)),§(512(fs)),
R(S521(f5)), (521(fs)), R(522(fs)), $(522(f5)))

S = (81,52, -+, 50)

(1)
Figure 1: Data format for the truth model

In this paper, we develop a technique to increase the
number of points in a FET data base in a statistically valid
manner. This is accomplished by interpolating among the
measured points. This “statistical interpolation” technique
is developed in Section 4.

2 The Truth Model

The Truth model as applied to FET data [6] is essentially a
means of using the actual measurements in simulating the
FET performance statistics. During a Monte Carlo simula-
tion of the circuit (for a good introduction to Monte Carlo
simulation see [7]), a measured FET is chosen at random
from the data base of the FET measurements, and the se-
lected FET’s S-parameters are used in a trial of the Monte
Carlo Simulation.

The data for this study comes from Triquint Semicon-
ductor Inc. and measures the 4 complex S-parameters of
179 GaAS FETs at 5 different frequencies. The measured
data from each FET is stored as a vector with 40 compo-
nents, i.e. 8 parameters x 5 frequencies = 40 total. The
data format is illustrated in Figure 1, where S; is a set of
measured S-parameters for the i** FET, and S is the entire
set of measurements.

3 Statistical Interpolation

The object of statistical interpolation is to simulate, via
the computer, sets of FET S-parameters which have the
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“same” statistics as the measured FET S-parameters which
are contained in the FET’s data base. An important point
to address is what we mean by two S-parameter sets hav-
ing the “same” statistics. To say two S-parameter data
sets have the “same” statistics would mean comparing their
40 dimensional joint probability density function estimates.
For this work, we will compare only the marginal densities
and correlation matrices. This is consistent with the goals
described in [5].

3.1 Statistical Interpolation Model

The technique we use for statistical interpolation is based
on Kernel Density Estimation [3]. In Kernel Density Es-
timation, data samples are used as the basis for defining
the shape of a probability density function (PDF) which is
used to model the PDF of the process by which the orig-
inal data was generated. Model parameters are chosen so
that the PDF of the model “smooths” or interpolates the
data, while simultaneously matching the statistics of the
data PDF.

The model we used is based on the following equation:

8; = 8; + aAS;diag(K;(k,h)) (2)

Where:

8; is the S-parameter vector generated from
this model;

Si is a FET measurement vector chosen at ran-
dom from the measured data;

a is a constant model parameter;

AS; is a sample vector chosen at random from
the Kernel PDF;

K;(k,h) is a scaling vector containing the distance

from the chosen S; to the kth nearest neigh-
bor in each of the 40 dimensions [4].

The Kernel PDF is a 40-dimensional standard normal
distribution with uncorrelated components and zero mean.
The spread around each data point, “S;”, is determined by
the model parameters “a” and “K;”. The sum of all the
Kernel PDF's forms the PDF used to generate the simulated
data.

The choice of parameters affects the smoothness of the
simulated density function. For example, as seen in Figure
2 for a 1-dimensional model, too small of an “a” value will
cause too much granularity in the simulated PDF whereas
too large of an “a” value will cause the simulated PDF to
be too smooth. The model parameters are chosen so that
the correlation matrices, and the marginal densities of the
measured and simulated match well. Analytical work shows
that this model preserves the correlation matrix of the data
only if the “a” variable is small. The validation in the next
section demonstrates the accuracy of our model.
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Original Data PDF

a)

Simulated PDF with “a” too small

b)

Simulated PDF with “a” too large

°)

Figure 2: Density Functions for a 1-dimension example
showing a) the original data PDF, b) the simulated PDF
when the “a”

a” constant is too small, and c¢) the simulated
PDF when the “a” constant is too large.

4 Testing and Validation

The complete testing and validation of the model requires
the verification that the probability density function of the
simulated data points matches that of the measured data.
We will show that the marginal densities and the correla-
tion matrix of the simulated data match that of the mea-
sured data. The marginal densities are checked by the
Kolmogorov-Smirnov test [6].

4.1

Figures 3 and 4 illustrate the model results with some ex-
ample 2-dimensional scatter plots. These scatter plots were
generated using the 179 Triquint FETs for the measured
data, and 10,000 simulated FET measurements generated
using our statistical interpolation model. The measured
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data is shown on the left and the simulated data is shown
on the right.

Figure 5 shows the K-S probabilities for all the marginal
densities for a typical run. The marginal densities for the
simulated samples compare well to the marginal densities
for the measured samples. All the K-S numbers are greater
than 0.98 with most of them being greater than 0.999. This
shows that there is a 98% — 99.9% probability that the
marginal densities match.

Figure 3: Real(S11) 6 GHz X-axis vs. Imag(S11) 6 GHz
Y-axis

Figure 4: Imag(512) 1 GHz X-axis vs. Real(S11) 26 GHz

Y-axis

4.2 Correlation Matrices

The correlation matrices were compared using two meth-
ods: by computing the maximum difference between the
elements of the matrices, and by the Euclidean norm of the
difference matrix. The maximum difference was 0.06, and
the Euclidean norm gave a value of 8.82 X 107%.

5 Conclusions

Statistical interpolation has been validated by comparing
the marginal densities and the correlation matrix from the
measured data set and a simulated data set. The com-
parison is excellent. The Kolmogorov-Smirnov test shows

the marginal densities are statistically the same, and two-
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dimensional scatter plots further verify the model. The
correlation matrices also compare well.

It should be noted, however, that while the Kolmogorov-
Smirnov tests and the comparison of correlation matrices is
the currently accepted method of comparing two multivari-
ate densities, they are only a necessary but not sufficient
test. More accurate tests are presented in [8].

The application of this model to statistical circuit design
and analysis is presently under study. This model should
also work well for FET model parameters. The authors are
developing methods for choosing optimal model parameters
for the statistical interpolation model.

Marginal | K Snumber
R(511(f10)) | 1.000000
5(511(f10)) | 1.000000
R(521(fr0) | 0.999998
$(521(fr0)) | 1.000000
R(S12(fu0)) | 0.999959
S(512(f0)) | 0.092316
R(522(fL.0)) | 1.000000
S(522(fu0)) | 0.999999
R(511(fe)) | 1.000000
$(S11(fs0)) | 0.999992
R(521(fa0)) | 0.099902
S(521(fe)) | 0.999994
R(512(fo)) | 0.999825
$(512(fs.0)) | 0.999999
R(522(fs0)) | 0.099813
$(532(fs.0)) | 0.991620
ER(Sll(flgs)) 1.000000
S(S511(f125)) | 0.999998
R(521(f135)) | 1.000000
$(521(fis.5)) | 1.000000 (3)
R(512( fra.5)) | 0.999998
S(S12(f1s.5)) | 0.999865
R(522(f13.5)) | 0.999998
§(522(f125)) | 0.999980
R(S11(f210)) | 0.999998
S(S11(f21.0)) | 0.999875
R(S21(fa10)) | 0.999989
$(521(fa10)) | 0.999063
R(S12(f21.0)) | 1.000000
F(S512(fa1.0)) | 0.999960
R(522(fa10)) | 1.000000
$(522(fr10)) | 0.999998
R(S11(f26.0)) | 0.984350
S(511(fee0)) | 0.999938
R(521(f26.0) | 0.999999
$(521(f260)) | 0999541
R(512(f26.0)) | 1.000000
S(S12(fa6.0)) | 0.999704
R(522(f26.0) | 0.999979
S(522(f26.0)) | 0.999997

Figure 5: K-S numbers comparing measured and simulated
marginal densities
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