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ABSTRACT

This work is the result of research into valid and com-

pact statistical FIET models. This paper presents a sta-

tistical interpolation technique which extends the Truth

Model proposed by Purviance and Meehan in [6]. The

Truth Model proposes to simply use samples from a FET

measurement data base when performing statistical analy-

sis and design of circuits.

The statistical interpolation technique presented here

multiplies the number of points within a statistical data

base by interpolating among the measurements in a statis-

tically valid manner. It lends itself easily to software imple-

mentation, and gives results better than other simulation

models now available.

We have developed and validated the statistical interpo-

lation technique using 179 Galium Arsenide FETs supplied

by TriQuint Semiconductor Inc. [5]. We show that the

marginal statistics and the correlation matrix are preserved

for the simulated samples.

1 Introduction

The past focus in statistical circuit design has been design

for high parametric yield [1,2,7]. Yield is the fraction of

circuits which meet specifications when the circuit parame-

ters statistically vary around their nominal values. If good

statistical models are used, software tools exist which can

determine circuit designs for which parametric yield is in

some sense optimized. To date, however, little work has

been done to validate statistical component models, or the

assumptions commonly made about the component statis-

tics [6,5].

A FET is commonly characterized by a data base con-

t aining a number of measurements, n, of actu~ manufac-

tured FETs. For inst ante, 179 FET measurements were

used in this study. This data base then characterizes the

statistical nature of the manufactured FET. The Truth

Model [6] proposes to simply use the actual FET measure-

ments when performing statistical analysis and design of

circuits. Thk is practical and accurate when the number

of measurements is “large”.

Si = (.!R(sll(fl)), s3(sll(fl)), $!(s12(fl)), %(s12(.fl)),

R(s21(.fJ), %(s21(fl)), !12(s22(fl)), s(s22(fl));

s=

R(sll(.f,)), S(sll(flj)), 3’qs12(j-,)), s(s12(f5)),

m

$?(s21(f5)), qs21(f,)), ?R(s22(f5)), s(s22(.t,))) ●

(Sl, s,,..., sn)

(1)

Figure 1: Data format for the truth model

In this paper, we develop a technique to increase the

number of points in a FET data base in a statistically valid

manner. This is accomplished by interpolating among the

measured points. This “statistical interpolation’) technique

is developed in Section 4.

2 The Tkuth Model

The Truth model as applied to FET data [6] is essentially a

means of using the actual measurements in simulating the

FET performance st atistics. During a Mont e Carlo simula-

tion of the circuit (for a good introduction to Monte Carlo

simulation see [7] ), a measured FET is chosen at random

from the data base of the FET measurements, and the se-

lected FET’s S-parameters are used in a trial of the Monte

Carlo Simulation.

The data for this study comes from Triquint Semicon-

ductor Inc. and measures the 4 complex S-parameters of

179 GaAS FETs at 5 different frequencies. The measured

data from each FET is stored as a vector with 40 compo-

nents, i.e. 8 parameters x 5 frequencies = 40 total. The

data format is illustrated in Figure 1, where S~ is a set of

measured S-parameters for the ith FET, and S is the entire

set of measurements.

3 Statistical Interpolation

The object of statistical interpolation is to simulate, via

the computer, sets of FET S-parameters which have the
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“same” statistics as the measured FET S-parameters which

are cent ained in the FET’s data base. An important point

to address is what we mean by two S-parameter sets hav-

ing the “same” statistics. To say two S-parameter data

sets have the “same” statistics would mean comparing their

40 dimensional joint probability y density function estimates.

For thk work, we will compare only the marginal densities

and correlation mat rices. This is consistent with the goals

described in [5].

3.1 Statistical Interpolation Model

The technique we use for statistical interpolation is based

on Kernel Density Estimation [3]. In Kernel Density Es-

timation, data samples are used as the basis for defining

the shape of a probability density function (PDF) which is

used to model the PDF of the process by which the orig-

inal data was generated. Model parameters are chosen so

that the PDF of the model “smooths” or interpolates the

data, while simultaneously matching the statistics of the

data PDF.

The model we used is based on the following equation:

Sj = S, + aAS#iag(K~(k, h)) (2)

Where:

S3 is the S-parameter vector generated from

this model;

Si is a FET measurement vector chosen at ran-

dom from the measured data;

is a constant model parameter;

;Sj is a sample vector chosen at random from

the Kernel PDF;

Xi(k, h) is a scaling vector containing the distance

from the chosen S’i to the kth nearest neigh-

bor in each of the 40 dimensions [4].

The Kernel PDF is a 40-dimensional standard normal

distribution with uncorrelated components and zero mean.

The spread around each data point, “Si”, is determined by

the model parameters “a” and “K;”. The sum of all the

Kernel PDFs forms the PDF used to generate the simulated

data.

The choice of parameters affects the smoothness of the

simulated density function. For example, as seen in Figure

2 for a l-dimensional model, too small of an “a” value will

cause too much granularity in the simulated PDF whereas

too large of an “a” value will cause the simulated PDF to

be too smooth. The model parameters are chosen so that

the correlation matrices, and the marginal densities of the

measured and simulated match well. Analytical work shows

that this model preserves the correlation matrix of the data

only if the “a” variable is small. The validation in the next

section demonstrates the accuracy of our model.

Original Data PDF

a)

Simulated PDF with “a” too small

b)

Simulated PDF with “a” too large

c)

Figure 2: Density Functions for a l-dimension example

showing a) the original data PDF, b) the simulated PDF

when the “a” constant is too small, and c) the simulated

PDF when the “a” constant is too large.

4 Testing and Validation

The complete testing and validation of the model requires

the verification that the probability density function of the

simulated data points mat ches that of the measured data.

We will show that the marginal densities and the correla-

tion matrix of the simulated data match that of the mea-

sured data. The marginal densities are checked by the

Kolmogorov-Srnirnov test [6].

4.1 Marginal Densities

Figures 3 and 4 illustrate the model results with some ex-

ample 2-dimensional scat t er plots. These scatter plots were

generated using the 179 Triquint FETs for the measured

data, and 10,000 simulated FET measurements generated

using our statistical interpolation model. The measured
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data is shown on the left and the simulated data is shown

on the right.

Figure 5 shows the K-S probabilities for all the marginal

densities for a typical run. The marginal densities for the

simulated samples compare well to the marginal densities

for the measured samples. All the K-S numbers are greater

than 0.98 with most of them being greater than 0.999. This

shows that there is a 98% — 99.970 probability that the

marginal densities match.
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igure 3: Rerd(Sll) 6 GHz X-axis vs. Imag(Sll) 6 GEz

Y-axis

Figure 4: Imag(S12) 1 GHz X-axis vs. Real(Sll) 26 GHz

Y-axis

4.2 Correlation Matrices

The correlation matrices were compared using two meth-

ods: by computing the maximum difference between the

elements of the matrices, and by the Euclidean norm of the

difference matrix. The maximum difference was 0.06, and

the Euclidean norm gave a value of 8.82 x 10-4.

5 Conclusions

Statistical interpolation has been validated by comparing

the marginal densities and the correlation matrix from the

measured data set and a simulated data set. The com-

parison is excellent. The Kolmogorov-Smirnov test shows

the marginal densities are statistically the same, and two-

dimensionrd scatter plots further verify the model. The

correlation matrices also compare well.

It should be noted, however, that while the Kolmogorov-

Smirnov tests and the comparison of correlation matrices is

the currently accepted method of comparing two multivari-

ate densities, they are only a necessary but not sufficient

test. More accurate tests are presented in [8].

The application of thk model to statistical circuit design

and analyi.is is presently under study. Thk model should

also work well for FET model parameters. The authors are

developing methods for choosing optimal model parameters

for the statistical interpolation model.

(3)

Figure 5: K-S numbers comparing measured and simulated

marginal densities
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